Características del Continuo

Imagino que casi cualquiera que haya pasado por este blog estará al tanto de que hay problemas en Teoría de Conjuntos que son independientes de los axiomas actualmente aceptados ($\mathit{ZFC}$). El más famoso, por lejos, es la

Hipótesis del Continuo ($\mathit{CH}$): Todo subconjunto no numerable de $\mathbb{R}$ es biyectivo con $\mathbb{R}$.

El cardinal de $\mathbb{N}$ se escribe $\aleph_0$ y se puede probar que hay un mínimo cardinal no numerable, $\aleph_1$. El cardinal de $\mathbb{R}$ es igual al cardinal de todas las funciones de $\mathbb{N}$ en $2=\{0,1\}$, y por ello lo llamamos $2^{\aleph_0}$, o bien $\mathfrak{c}$ (por “el continuo”). Como $\mathbb{R}$ no es numerable, tiene subconjuntos de tamaño $\aleph_1$. Por tal motivo, la forma más cortita de enunciar $\mathit{CH}$ es escribir $2^{\aleph_0} =\aleph_1$: no hay cardinales entre el de $\mathbb{N}$ y el de $\mathbb{R}$. Continue reading