Problemas señeros (II)

Abstract. This is the second post dedicated to elementary problems with a set-theoretic solution. We discuss the impossibility of an infinite descending chain of sets $\{X_j\}_{j}$ such that $\P(X_{n+1})=X_n$. This is an exercise in Kunen .


El logaritmo no se puede iterar infinitamente

Muy fácil: números reales, operaciones usuales. Específicamente, operaciones que achican. Por ejemplo, “restar 1”. Desde que se inventaron los enteros, nadie teme iterar la operación resto-uno. Es decir, empezando en cualquier número (e.g. el 4) puedo aplicar la operación resto-uno arbitrarias veces y obtengo un resultado significativo. Incluso, infinitamente: puedo armarme una sucesión
\[x_0 \doteq 4 \qquad x_{n+1} \doteq x_n – 1,\]
que fácilmente enumeramos así: $4, 3, 2, 1, 0 , -1, -2,\dots$. Continue reading

Problemas señeros (I)

Abstract. In this series of posts I’ll discuss problems that can be posed in an elementary way but the only way to solve them (to the best of my knowledge) is to develop some set theory. This post is dedicated to a problem appearing in Fraenkel’s Set Theory , that states that you can change the iso type of any total order by adding just one point. The solution depends on well orders, which I consider a part of the theory of sets.


Leyendo diversas fuentes, encontré dos problemas elementales cuya solución involucra desarrollar algo de Teoría de Conjuntos “seria”. En este post plantearé uno de ellos.

Cómo romper un orden total

Un orden total es un conjunto $L$ con una relación “$<$” irreflexiva, transitiva, y para la cual vale tricotomía: se da alguna de $x<y$, $x = y$ ó $x>y$ para cualquier par $x,y$ en $L$.
Continue reading

Publish NOW, or perish

Academic life has given me a lesson for the second time, and it was harsh this time.

The first lesson had a happy ending, and it can be described by the following words:

Beware of the paper bin!

This happened on 2008. I was experimenting with a really wonderful software, the bundle Prover9-Mace4, by the late Bill McCune. My aim was to obtain a family of examples of equational classes where some formula grows unboundedly in complexity (this formula was related to direct product representations). Continue reading

How about a little absurdity?

Assume you want to prove a Theorem X. If you’re a fan of reductio ad absurdum (RAA), you start by saying “Assume that Theorem X is false. Hence…” and after some reasoning, you reach a contradiction.  You write as a closing sentence, “This contradiction shows that Theorem X must be true.”

I want to argue about the following questions: Do we need only one use of the rule of contradiction? Can we start a proof as above and not use an argument by contradiction but at the end? Continue reading

Ordinales (III)

Abstract. This is the last post in the informal series on ordinals. We give von Neumann’s definition, and show how arithmetical operations can be defined on ordinals by using recursion. Finally we give a property of well ordered chains of subsets of ${\mathbb N}$ that is not shared by ordinary chains.


Ordinales a la von Neumann

La forma más cómoda de referirse a un tipo de isomorfismo (de cualquier cosa) es ponerse de acuerdo de antemano y elegir representantes para cada familia de objetos isomorfos. La elección “canónica” de representantes de tipos de buenos órdenes se debe a von Neumann, y su particularidad es que sólo utiliza conjuntos y la relación de pertenencia. Continue reading

Ordinales (II)

Abstract. This is the second post about ordinals. In the first one I discussed well-orders and some countable examples. Now we’ll get an eagle’s view on induction and recursion.


Inducción y recursión en conjuntos bien ordenados.    La principal utilidad de los conjuntos bien ordenados es que para ellos valen los principios de inducción y de definición por recursión: Continue reading

Ordinales (I)

Abstract. This is the first post of a series concerning ordinals. I start by motivating their need by means of Cantor-Bendixson derivative, and then develop some of the basic concepts (induction, recursion, arithmetic).


Comenzaré discutiendo una operación sobre los subconjuntos de un espacio topológico. Es en algún sentido dual a la clausura, porque en vez de agrandar, achica.

Una Derivada Topológica.   

Definición 1 Sea $X$ espacio topológico. La derivada de Cantor-Bendixson de $X$ es $X’\mathrel{\mathop:}= \{x\in X : x \text{ no es aislado}\}$.

De hecho, aplicar la clausura a un conjunto le agrega todos los puntos de acumulación, y aplicarla a un conjunto cerrado no hace nada. En cambio, la derivada de Cantor-Bendixson sólo deja los puntos de acumulación y se puede aplicar varias veces y obtener cosas distintas cada vez. Para no escribir cosas como $ {X'{}'{}'{}'{}'{}'{}’}$, definimos:

$ \displaystyle X^{(0)}\mathrel{\mathop:}= X; \qquad X^{(n+1)}\mathrel{\mathop:}= \bigl(X^{(n)}\bigr)’.$

Notemos que esta derivada es decreciente, $ {X^{(n)}\supseteq X^{(n+1)}}$ y que cualquiera sea $ {X}$, $ {X’}$ es cerrado.

Ejercicio 1 Probar lo anterior, y encontrar $ {X\subseteq {\mathbb R}}$ tal que $ {X’}$ y $ X'{}’$ sean distintos. (¿Y que $ {X'{}’\neq X^{(3)}}$? ¿Etcétera?)

En general, para cada $n$, hay subconjuntos $X$ de los reales tales que todos los $X^{(j)}$ son distintos con $j< n$. Más aún, hay un $X$ tal que $X^{(n)}$ es una sucesión infinita estrictamente decreciente. Continue reading

Los axiomas de la Teoría de Conjuntos

Abstract. Just introducing the ZFC axioms very briefly, with a slight hint of what first-order logic is.


Se afirma que toda la Matemática se puede basar en la Teoría de Conjuntos. No voy a dedicar este post a justificar esta afirmación (quizá es un tema que se puede discutir en los comentarios a esta nota), sino simplemente voy a enumerar las propiedades de los conjuntos que permiten que esto pase.

Los axiomas que voy a introducir se conocen por los apellidos de Zermelo, Fraenkel y se incluye en su nombre explícitamente a uno de ellos (el de elección, o Axiom of Choice (AC) en inglés); para acortar ponemos ZFC.

La mayor parte de estos axiomas dan cuenta de operaciones “obvias” de construcción de conjuntos, o bien propiedades de clausura de los mismos. Continue reading

Pressing the word…

This is my very first post.

Plans for the next few months: expository posts on 6 or 7 results (hope interesting enough), and maintain some discussion on basic set theory, aiming to develop this area in the neighboring region of my university (this will probably be in Spanish, and if times permits, also in English).