Ordinales (III)

Abstract. This is the last post in the informal series on ordinals. We give von Neumann’s definition, and show how arithmetical operations can be defined on ordinals by using recursion. Finally we give a property of well ordered chains of subsets of ${\mathbb N}$ that is not shared by ordinary chains.


Ordinales a la von Neumann

La forma más cómoda de referirse a un tipo de isomorfismo (de cualquier cosa) es ponerse de acuerdo de antemano y elegir representantes para cada familia de objetos isomorfos. La elección “canónica” de representantes de tipos de buenos órdenes se debe a von Neumann, y su particularidad es que sólo utiliza conjuntos y la relación de pertenencia. Continue reading

Ordinales (II)

Abstract. This is the second post about ordinals. In the first one I discussed well-orders and some countable examples. Now we’ll get an eagle’s view on induction and recursion.


Inducción y recursión en conjuntos bien ordenados.    La principal utilidad de los conjuntos bien ordenados es que para ellos valen los principios de inducción y de definición por recursión: Continue reading

Ordinales (I)

Abstract. This is the first post of a series concerning ordinals. I start by motivating their need by means of Cantor-Bendixson derivative, and then develop some of the basic concepts (induction, recursion, arithmetic).


Comenzaré discutiendo una operación sobre los subconjuntos de un espacio topológico. Es en algún sentido dual a la clausura, porque en vez de agrandar, achica.

Una Derivada Topológica.   

Definición 1 Sea $X$ espacio topológico. La derivada de Cantor-Bendixson de $X$ es $X’\mathrel{\mathop:}= \{x\in X : x \text{ no es aislado}\}$.

De hecho, aplicar la clausura a un conjunto le agrega todos los puntos de acumulación, y aplicarla a un conjunto cerrado no hace nada. En cambio, la derivada de Cantor-Bendixson sólo deja los puntos de acumulación y se puede aplicar varias veces y obtener cosas distintas cada vez. Para no escribir cosas como $ {X'{}'{}'{}'{}'{}'{}’}$, definimos:

$ \displaystyle X^{(0)}\mathrel{\mathop:}= X; \qquad X^{(n+1)}\mathrel{\mathop:}= \bigl(X^{(n)}\bigr)’.$

Notemos que esta derivada es decreciente, $ {X^{(n)}\supseteq X^{(n+1)}}$ y que cualquiera sea $ {X}$, $ {X’}$ es cerrado.

Ejercicio 1 Probar lo anterior, y encontrar $ {X\subseteq {\mathbb R}}$ tal que $ {X’}$ y $ X'{}’$ sean distintos. (¿Y que $ {X'{}’\neq X^{(3)}}$? ¿Etcétera?)

En general, para cada $n$, hay subconjuntos $X$ de los reales tales que todos los $X^{(j)}$ son distintos con $j< n$. Más aún, hay un $X$ tal que $X^{(n)}$ es una sucesión infinita estrictamente decreciente. Continue reading

Los axiomas de la Teoría de Conjuntos

Abstract. Just introducing the ZFC axioms very briefly, with a slight hint of what first-order logic is.


Se afirma que toda la Matemática se puede basar en la Teoría de Conjuntos. No voy a dedicar este post a justificar esta afirmación (quizá es un tema que se puede discutir en los comentarios a esta nota), sino simplemente voy a enumerar las propiedades de los conjuntos que permiten que esto pase.

Los axiomas que voy a introducir se conocen por los apellidos de Zermelo, Fraenkel y se incluye en su nombre explícitamente a uno de ellos (el de elección, o Axiom of Choice (AC) en inglés); para acortar ponemos ZFC.

La mayor parte de estos axiomas dan cuenta de operaciones “obvias” de construcción de conjuntos, o bien propiedades de clausura de los mismos. Continue reading