Lecturas iniciales en Teoría de Conjuntos

En sólo un día y medio comenzará el Congreso Monteiro, y con la suerte de tener el marco de un nutrido menú de charlas plenarias muy interesantes, también comenzará mi pequeño curso sobre el Axioma de Martin ($\MA$).

En la web del congreso están subidas las notas del curso, que esencialmente contienen los últimos posts del blog sobre el tema. Como un extra, quise cerrarlas con algunas recomendaciones de lectura; o más bien, mis pareceres al ver algunos libros. Se las comparto a continuación. Continue reading

Aplicaciones del Axioma de Martin

Como prometimos, veremos a continuación algunas aplicaciones del Axioma de Martin. Recordemos que $\CH$ implica (o más bien, “trivializa”) a $\MA$. El Axioma de Martin comparte varias consecuencias de $\CH$, pero por razones distintas. Donde $\CH$ obliga a varias familias a tener cardinal $2^{\ale0}$ por “falta de lugar” (no hay cardinales entre $\ale0$ y $2^{\ale0}$), $\MA$ lo hace porque muestra que dichas familias son muy “ricas”. Volveremos sobre esto. Continue reading

El Axioma de Martin

En un post anterior dimos las definiciones básicas de conjuntos densos y filtros genéricos en conjuntos parcialmente ordenados (“posets”), y enunciamos el Teorema de Existencia de Filtro genérico, que copiamos a continuación:

Teorema 1. Si $\mathbb{P}$ es un poset, $\mathcal{D}$ es una familia contable de subconjuntos densos de $\mathbb{P}$ y $p\in\mathbb{P}$, hay un filtro $\mathcal{D}$-genérico $G$ tal que $p\in G$.

La prueba es una construcción recursiva y depende de $\AC$. La siguiente preocupación es saber cuán ajustadas son las hipótesis de este teorema. Por ejemplo, ¿vale si la familia $\mathcal{D}$ no es contable? Respuesta rebuscada: sin salirse del Universo, no. Continue reading

Nociones de Forzamiento

La técnica de forcing o forzamiento permite construir objetos mediante aproximaciones. En general es muy difícil o imposible dar una descripción completa del objeto a construir, pero esto no significa que no haya uno: muchas veces son la mayoría, y la gran idea detrás del forcing es que el objeto “genérico” cumplirá con los requerimientos, con una noción adecuada de genericidad. El Axioma de Martin ($\MA$) asegura que hay objetos genéricos para una variedad de situaciones, y su desarrollo fue en gran medida simultáneo con el forcing. Por eso ahora se usa $\MA$ para motivar este último. Continue reading

Características del Continuo

Imagino que casi cualquiera que haya pasado por este blog estará al tanto de que hay problemas en Teoría de Conjuntos que son independientes de los axiomas actualmente aceptados ($\mathit{ZFC}$). El más famoso, por lejos, es la

Hipótesis del Continuo ($\mathit{CH}$): Todo subconjunto no numerable de $\mathbb{R}$ es biyectivo con $\mathbb{R}$.

El cardinal de $\mathbb{N}$ se escribe $\aleph_0$ y se puede probar que hay un mínimo cardinal no numerable, $\aleph_1$. El cardinal de $\mathbb{R}$ es igual al cardinal de todas las funciones de $\mathbb{N}$ en $2=\{0,1\}$, y por ello lo llamamos $2^{\aleph_0}$, o bien $\mathfrak{c}$ (por “el continuo”). Como $\mathbb{R}$ no es numerable, tiene subconjuntos de tamaño $\aleph_1$. Por tal motivo, la forma más cortita de enunciar $\mathit{CH}$ es escribir $2^{\aleph_0} =\aleph_1$: no hay cardinales entre el de $\mathbb{N}$ y el de $\mathbb{R}$. Continue reading

Congreso “Dr. Antonio Monteiro” 2017

XIII Congreso MonteiroDel 31 de mayo al 2 de junio de 2017 se realizará en la ciudad de Bahía Blanca el XIII Congreso “Dr. Antonio Monteiro”, dedicado a Lógica en esta edición. Asimismo, habrá sesiones de comunicaciones temáticas en todas las áreas (Álgebra, Análisis, Geometría, Probabilidad y Estadística, Lógica y Matemática Aplicada).

Esta es una ocasión muy especial para mí porque daré un minicurso (de aproximadamente 4 horas) sobre un tema de Teoría de Conjuntos: el Axioma de Martin. Por ahora sólo puedo compartir el resumen del cursito, y con un poco más de tiempo contaré más sobre el tema (ya lo prometí en otro post). De hecho, gran parte del material está en un apunte del curso que di el año pasado (aún en edición), pero hay que adaptarlo para que tenga sentido para un minicurso (que es, más o menos, ¡el mismo trabajo que para adaptarlo para la web!).

A continuación, el resumen:

El enunciado del Axioma de Martin (MA) involucra conjuntos parcialmente ordenados y afirma la existencia de subconjuntos “genéricos” de los mismos. Es una consecuencia de la Hipótesis del Continuo de Cantor, y como ella es independiente del resto de los axiomas usuales de la Teoría de Conjuntos (o “la matemática”, dependiendo del punto de vista). Discutiremos aplicaciones de MA a problemas combinatorios, de Teoría de la Medida muy básicos y aritmética cardinal. Sin embargo, el mayor interés en MA radica en que sus preliminares coinciden en gran medida con los de la técnica de forzamiento (forcing), introducida por Cohen en 1963 y que sigue siendo la herramienta más importante de investigación en Teoría de Conjuntos.

¡Espero verlos por ahí!

Exitoso fin de curso

El miércoles pasado terminamos con el curso Teoría de Conjuntos que dicté en FaMAFUNC. Estoy muy contento por el resultado, y felicito a los “supervivientes” que llegaron hasta el final.

Una característica de este curso es que abordamos algunos temas que (hasta donde llega mi conocimiento) no se incluyen en los programas de otros similares que se hayan dictado en el país. Entre ellos puedo enumerar:

  • el desarrollo de inducción y recursión independientemente del Axioma de Partes;
  • una introducción al Axioma de Martin usando características cardinales del continuo;
  • el estudio de subconjuntos cerrados no acotados (club) y estacionarios de cardinales regulares; y por último
  • los resultados de Ulam sobre el problema de la medida de Lebesgue que motivaron la definición de los cardinales medibles.

La importancia técnica del primer ítem radica en que hace posible definir la noción de rango de un conjunto (una medida de complejidad) y la aritmética ordinal sin apelar al axioma que garantiza la existencia del conjunto de partes de cualquier conjunto. Esto tiene aplicaciones en las pruebas de independencia, igual que el segundo ítem. Sobre este último y el tercero quisiera extenderme en otro momento. Quisiera dedicar el resto de este post al cuarto ítem, porque muestra una de las tantas conexiones ocultas entre el trabajo fundacional y la matemática tradicional. Continue reading